Quot Functors for Deligne-mumford Stacks
نویسنده
چکیده
Given a separated and locally finitely-presented Deligne-Mumford stack X over an algebraic space S, and a locally finitely-presented OX -module F , we prove that the Quot functor Quot(F/X/S) is represented by a separated and locally finitely-presented algebraic space over S. Under additional hypotheses, we prove that the connected components of Quot(F/X/S) are quasi-projective over S.
منابع مشابه
Derived Algebraic Geometry XIV: Representability Theorems
2 Properties of Moduli Functors 22 2.1 Nilcomplete, Cohesive, and Integrable Functors . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Relativized Properties of Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3 Finiteness Conditions on Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4 Moduli of Spectral Deligne-Mumford St...
متن کاملDerived Algebraic Geometry VIII: Quasi-Coherent Sheaves and Tannaka Duality Theorems
1 Generalities on Spectral Deligne-Mumford Stacks 4 1.1 Points of Spectral Deligne-Mumford Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Étale Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Localic Spectral Deligne-Mumford Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 Quasi-Compactness of Sp...
متن کاملArithmetic Intersection Theory on Deligne-mumford Stacks
In this paper the arithmetic Chow groups and their product structure are extended from the category of regular arithmetic varieties to regular Deligne-Mumford stacks proper over a general arithmetic ring. The method used also gives another construction of the product on the usual Chow groups of a regular Deligne-Mumford stack.
متن کاملThe Orbifold Chow Ring of Toric Deligne-mumford Stacks
Generalizing toric varieties, we introduce toric Deligne-Mumford stacks. The main result in this paper is an explicit calculation of the orbifold Chow ring of a toric Deligne-Mumford stack. As an application, we prove that the orbifold Chow ring of the toric Deligne-Mumford stack associated to a simplicial toric variety is a flat deformation of (but is not necessarily isomorphic to) the Chow ri...
متن کاملOn the Conjecture of King for Smooth Toric Deligne-mumford Stacks
We construct full strong exceptional collections of line bundles on smooth toric Fano Deligne-Mumford stacks of Picard number at most two and of any Picard number in dimension two. It is hoped that the approach of this paper will eventually lead to the proof of the existence of such collections on all smooth toric nef-Fano Deligne-Mumford stacks.
متن کامل